
30-Day Flutter Training: From Basic to

Advanced

This syllabus is structured to provide a strong foundation and progressively build your skills to

an advanced level. Each week includes theoretical concepts, practical coding exercises, and

mini-projects.

Week 1: The Foundation - Dart & Flutter Basics

The goal this week is to get you comfortable with the Dart language and the fundamental

concepts of the Flutter framework.

• Day 1-2: Introduction to Dart

o Topics: What is Dart? Basic syntax, variables, data types (int, double, String,

bool, List, Map), and operators.

o Practice: Write simple Dart programs to practice variable declaration,

manipulation, and printing output.

• Day 3: Dart Functions & Control Flow

o Topics: Functions (named, anonymous, arrow), parameters (required, optional,

named), and control flow statements (if/else, for, while, switch).

o Practice: Create functions for simple calculations and use loops to iterate over

lists.

• Day 4: Object-Oriented Programming (OOP) in Dart

o Topics: Classes, objects, constructors, methods, inheritance, and mixins.

o Practice: Model real-world objects (e.g., Car, User) using classes.

• Day 5: Introduction to Flutter

o Topics: What is Flutter? Setting up your development environment (Flutter SDK,

Android Studio/VS Code), and creating your first Flutter project.

o Practice: Run the default counter app on an emulator or a physical device.

• Day 6: Understanding Widgets

o Topics: The "Everything is a widget" concept, Stateless vs. Stateful widgets, and

the widget tree.

o Practice: Explore the code of the counter app to identify different widgets.

• Day 7: Basic UI Layout

o Topics: Core layout widgets: Container, Row, Column, Text, Icon, Image.

o Mini-Project: Build a simple static "User Profile" screen with an image, name,

and bio.

Week 2: Building Interactive UIs

This week, we dive deep into creating beautiful and responsive user interfaces and managing

their state.

• Day 8-9: Layout & Scrolling

o Topics: Stack, Expanded, Padding, Margin, ListView, GridView, and SingleChildScrollView.

o Practice: Create a scrollable list of items and a more complex card-based layout.

• Day 10: User Interaction & Input

o Topics: Handling gestures with GestureDetector, using buttons (ElevatedButton,

TextButton), and input fields (TextField).

o Practice: Add buttons to your profile screen and create a simple login form.

• Day 11: State Management (The Basics)

o Topics: Deep dive into StatefulWidget and the setState() method. Understanding the

widget lifecycle.

o Practice: Convert the counter app to have increment and decrement buttons.

• Day 12: Navigation & Routing

o Topics: Navigating between screens using Navigator.push() and Navigator.pop().

Passing data between screens.

o Practice: Create a multi-screen app where a list screen navigates to a detail

screen.

• Day 13: Theming & Styling

o Topics: Using ThemeData to create a consistent app-wide style. Custom fonts and

colors.

o Practice: Apply a custom theme to the app you've been building.

• Day 14: Mid-point Project

o Project: Build a simple "To-Do List" application.

▪ Features: Add tasks, view a list of tasks, and mark tasks as complete.

▪ Concepts Used: ListView, TextField, StatefulWidget, setState(), basic navigation.

Week 3: Data, Networking & Advanced State

We'll connect your app to the internet, handle data, and explore more robust state management

solutions.

• Day 15-16: Asynchronous Programming in Dart

o Topics: Future, async, await. Understanding how to handle operations that take time

without freezing the UI.

o Practice: Write functions that simulate network delays using Future.delayed.

• Day 17-18: Networking with HTTP

o Topics: Making API calls using the http package. Fetching and parsing JSON

data.

o Practice: Fetch data from a public API (e.g., JSONPlaceholder) and display it in

a ListView.

• Day 19: Data Persistence

o Topics: Storing data locally on the device using the shared_preferences package.

o Practice: Save user settings or the to-do list items so they persist after the app

closes.

• Day 20-21: Introduction to State Management Solutions

o Topics: Why setState() isn't always enough. Introduction to the Provider package for

state management.

o Practice: Refactor the To-Do List app to manage its state using Provider.

• Day 22: Forms & Validation

o Topics: Using the Form widget and TextFormField for robust input validation.

o Practice: Enhance your login form with validation for email and password fields.

• Day 23: Project Work

o Project: Build a "Weather App".

▪ Features: Fetch live weather data from an API based on a city name,

display the current temperature, and show an icon representing the

weather.

▪ Concepts Used: HTTP requests, JSON parsing, async/await, Provider.

Week 4: Production Ready & Advanced Topics

The final week is about polishing your app, testing it, and preparing it for the world.

• Day 24: Introduction to Firebase

o Topics: What is Firebase? Setting up a Firebase project and integrating it with

your Flutter app.

o Practice: Add Firebase core to your project.

• Day 25: Firebase Authentication

o Topics: Implementing user sign-up and login using Firebase Authentication

(Email/Password).

o Practice: Replace your mock login form with a fully functional Firebase

authentication flow.

• Day 26: Cloud Firestore

o Topics: Using Firestore as a real-time NoSQL database. Reading and writing

data.

o Practice: Store user data or to-do list items in Firestore instead of locally.

• Day 27: Animations

o Topics: Implicit animations (AnimatedContainer) and explicit animations

(AnimationController).

o Practice: Add subtle animations to your UI elements, like a button that changes

size or color smoothly.

• Day 28: Testing

o Topics: The importance of testing. Writing unit tests for Dart logic and widget

tests for your UI components.

o Practice: Write a simple test for a function and a widget in your app.

• Day 29: Building & Deploying

o Topics: Preparing your app for release. Building an APK (Android) or IPA (iOS).

Overview of the Google Play Store and Apple App Store submission process.

o Practice: Generate a release build of your final project.

• Day 30: Final Capstone Project & Review

o Project: Build a simple "Chat Application" using Firebase.

▪ Features: User login, a list of chat rooms, real-time messaging using

Firestore.

o Review: Go over all the concepts learned, identify areas of weakness, and plan

your next steps in the Flutter ecosystem.

30-Day HTML & CSS Training Program: Beginner to Advanced

Course Overview

This comprehensive 30-day program transforms complete beginners into proficient frontend developers
capable of creating modern, responsive websites. Each day builds upon previous concepts with hands-on
projects and real-world applications.

Daily Structure: 2-3 hours (1 hour theory + 1-2 hours hands-on practice) Target Audience: Complete
beginners to web development Prerequisites: Basic computer literacy and familiarity with text editors
Final Outcome: Build professional-quality websites and prepare for JavaScript learning

WEEK 1: HTML FOUNDATIONS (Days 1-7)

Day 1: Web Development Introduction & Setup

How the web works (client-server, browsers, rendering)

HTML, CSS, JavaScript relationship

Setting up development environment (VS Code, extensions)

Browser developer tools introduction

Creating your first HTML file

Practice: "Hello World" webpage with proper structure

Day 2: HTML Document Structure

DOCTYPE declaration and HTML5

HTML document anatomy (html, head, body)

Meta tags and SEO basics

Title and description optimization

Character encoding (UTF-8)

Practice: Create a personal introduction page with proper metadata

Day 3: Text Content & Typography

Headings hierarchy (h1-h6) and semantic importance

Paragraphs, line breaks, and horizontal rules

Text formatting (strong, em, mark, del, ins)

Quotes (blockquote, q, cite)

Special characters and entities

Practice: Build a blog post layout with various text elements

Day 4: Lists & Navigation

Ordered lists (ol) and unordered lists (ul)

Definition lists (dl, dt, dd)

Nested lists and styling considerations

Navigation concepts with lists

Practice: Create a recipe page with ingredients and steps

Day 5: Links & Images

Anchor tags and href attributes

Absolute vs relative URLs

Link targets and accessibility

Image elements and attributes (src, alt, title)

Image formats and optimization basics

Practice: Build a photo gallery with navigation

Day 6: Tables & Data Presentation

Table structure (table, tr, td, th)

Table headers and captions

Spanning cells (rowspan, colspan)

Table accessibility with scope

When to use tables vs other layouts

Practice: Create a comparison table for products/services

Day 7: Forms Fundamentals

Form element and action/method attributes

Input types (text, email, password, number, etc.)

Labels and form accessibility

Textarea and select elements

Form validation basics

Practice: Build a contact form with various input types

WEEK 2: CSS FUNDAMENTALS (Days 8-14)

Day 8: CSS Introduction & Syntax

CSS purpose and capabilities

CSS syntax (selectors, properties, values)

Three ways to add CSS (inline, internal, external)

CSS comments and organization

Browser default styles and CSS reset

Practice: Style the HTML pages from Week 1

Day 9: CSS Selectors

Element, class, and ID selectors

Descendant and child selectors

Attribute selectors

Pseudo-classes (:hover, :focus, :nth-child)

Pseudo-elements (::before, ::after)

Practice: Create a styled navigation menu with hover effects

Day 10: Typography & Text Styling

Font families and web fonts

Font size, weight, and style

Text alignment, decoration, and transformation

Line height and letter spacing

Google Fonts integration

Practice: Design a typography showcase page

Day 11: Colors & Backgrounds

Color values (hex, rgb, rgba, hsl, hsla)

Text and background colors

Background images and properties

Gradients (linear and radial)

Color accessibility and contrast

Practice: Create a hero section with background image and gradient overlay

Day 12: Box Model & Spacing

Content, padding, border, margin

Box-sizing property

Margin collapse understanding

Border styles, width, and radius

Shorthand properties

Practice: Build card components with proper spacing

Day 13: Display & Positioning

Display properties (block, inline, inline-block, none)

Position properties (static, relative, absolute, fixed)

Z-index and stacking context

Visibility vs display none

Practice: Create a fixed header with dropdown menu

Day 14: Week 2 Review & Project

Comprehensive review of CSS fundamentals

Major Project: Personal Portfolio Homepage
Header with navigation

Hero section with styling

About section with typography

Portfolio grid layout

Contact form with styling

WEEK 3: ADVANCED CSS & LAYOUTS (Days 15-21)

Day 15: Flexbox Fundamentals

Flex container and flex items

Main axis and cross axis concepts

Flex-direction and flex-wrap

Justify-content and align-items

Flex-grow, flex-shrink, flex-basis

Practice: Create flexible card layouts and centered content

Day 16: Advanced Flexbox Layouts

Align-self for individual items

Order property for visual reordering

Nested flexbox containers

Common flexbox patterns

Practice: Build a responsive website header and sidebar layout

Day 17: CSS Grid Fundamentals

Grid container and grid items

Grid lines, tracks, and areas

Grid-template-columns and grid-template-rows

Gap properties for spacing

Practice: Create magazine-style layouts with CSS Grid

Day 18: Advanced CSS Grid

Grid-template-areas for named layouts

Implicit vs explicit grids

Auto-fit and auto-fill

Minmax function for responsive grids

Practice: Build a complex dashboard layout

Day 19: Responsive Design Principles

Mobile-first design approach

Viewport meta tag and responsive units

Media queries syntax and breakpoints

Responsive images and srcset

Practice: Make previous projects fully responsive

Day 20: Advanced Responsive Techniques

Container queries introduction

Clamp() function for fluid typography

Responsive navigation patterns

Touch-friendly design considerations

Practice: Create a responsive e-commerce product grid

Day 21: Week 3 Review & Project

Integration of Flexbox, Grid, and responsive design

Major Project: Multi-page Responsive Website
Homepage with hero and feature sections

About page with team grid

Services page with flexible layouts

Contact page with form and map

Fully responsive across all devices

WEEK 4: MODERN CSS & PROFESSIONAL TECHNIQUES (Days 22-28)

Day 22: CSS Transitions & Animations

Transition properties and timing functions

Transform property (translate, rotate, scale)

Keyframe animations

Animation properties and control

Performance considerations

Practice: Add smooth interactions to portfolio components

Day 23: Advanced Selectors & Pseudo-classes

Structural pseudo-classes (:nth-of-type, :first-child)

State pseudo-classes (:checked, :disabled, :valid)

Logical pseudo-classes (:is, :where, :not)

Advanced attribute selectors

Practice: Create interactive form with custom styling

Day 24: Modern CSS Features

CSS custom properties (variables)

calc() function for dynamic calculations

CSS shapes and clip-path

CSS filters and backdrop-filter

Practice: Build a modern landing page with advanced effects

Day 25: CSS Architecture & Organization

BEM methodology (Block, Element, Modifier)

CSS file organization strategies

Naming conventions and maintainability

CSS preprocessing overview (Sass basics)

Practice: Refactor previous projects with BEM methodology

Day 26: Performance & Optimization

CSS performance best practices

Critical CSS and above-the-fold optimization

Image optimization techniques

CSS minification and compression

Practice: Optimize website performance and run audits

Day 27: Accessibility & Inclusive Design

Web accessibility principles (WCAG basics)

Semantic HTML importance

Focus management and keyboard navigation

Color contrast and visual accessibility

Screen reader considerations

Practice: Audit and improve accessibility of existing projects

Day 28: CSS Frameworks Overview

Introduction to CSS frameworks (Bootstrap, Tailwind)

When to use frameworks vs custom CSS

CSS-in-JS concepts

Component-based styling approaches

Practice: Rebuild a section using Bootstrap or Tailwind

DAYS 29-30: FINAL PROJECT & PORTFOLIO

Day 29: Capstone Project Development

Choose one comprehensive project:

Option A: Business Website

Multi-page corporate website

Advanced layouts and interactions

Contact forms and call-to-actions

SEO optimization

Option B: Creative Portfolio

Interactive portfolio showcase

Advanced animations and effects

Image galleries and project displays

Personal branding elements

Option C: E-commerce Landing Page

Product showcase with grid layouts

Shopping cart interface (visual only)

Responsive product cards

Marketing sections and testimonials

Day 30: Final Polish & Career Preparation

Code review and optimization

Cross-browser testing

Performance audit and improvements

Portfolio Preparation:
GitHub Pages hosting setup

Professional README files

Project documentation

Live demo links

Next Steps Planning:
JavaScript learning path

Framework recommendations

Career development guidance

Daily Practice Structure

Theory Session (45-60 minutes):

New concept explanation with examples

Best practices and common pitfalls

Real-world applications and use cases

Tool demonstrations

Hands-on Practice (60-90 minutes):

Guided coding exercises

Individual practice projects

Problem-solving challenges

Code review and debugging

Daily Deliverables:

Working HTML/CSS files

Screenshots of completed exercises

Personal notes and code comments

Daily reflection and questions

Weekly Projects

Week 1: Personal Introduction Website

Semantic HTML structure

Basic content organization

Forms and multimedia integration

Week 2: Styled Portfolio Homepage

Complete CSS styling

Typography and color schemes

Interactive elements and hover effects

Week 3: Responsive Multi-page Website

Advanced layouts with Flexbox/Grid

Full responsive design

Navigation and user experience

Week 4: Professional Portfolio Site

Modern CSS features and animations

Performance optimization

Accessibility compliance

Production-ready code

Tools & Resources

Required Software:

VS Code with HTML/CSS extensions

Modern web browsers (Chrome, Firefox, Safari)

Git for version control

Image editing tool (GIMP/Photoshop/Figma)

Recommended Extensions:

Live Server for VS Code

Auto Rename Tag

CSS Peek

Color Highlight

Prettier for code formatting

Design Resources:

Google Fonts for typography

Unsplash for stock photos

Coolors.co for color palettes

FontAwesome for icons

CSS Reset/Normalize

Learning Resources:

MDN Web Docs (HTML/CSS reference)

Can I Use for browser compatibility

W3C Validators for code validation

PageSpeed Insights for performance

WAVE for accessibility testing

Assessment Criteria

Technical Skills (40%):

Clean, semantic HTML structure

Efficient CSS organization and syntax

Responsive design implementation

Cross-browser compatibility

Design Quality (30%):

Visual hierarchy and typography

Color theory application

Layout and spacing consistency

User experience considerations

Code Quality (20%):

Proper indentation and formatting

Meaningful class/ID naming

Code comments and documentation

File organization

Problem Solving (10%):

Debugging and troubleshooting

Creative solutions to layout challenges

Adaptation of learned concepts

Independent research and learning

Career Outcomes

Skills Acquired:

Create semantic, accessible HTML structures

Design responsive layouts with modern CSS

Implement interactive user interfaces

Optimize websites for performance and SEO

Use professional development workflows

Job Readiness:

Frontend Developer (Junior): Ready for entry-level positions

Web Designer: Can create static websites and prototypes

UI Developer: Foundation for user interface development

Freelance Web Developer: Capable of taking on client projects

Next Learning Steps:

JavaScript: Add interactivity and dynamic behavior

CSS Frameworks: Bootstrap, Tailwind CSS, or Material UI

CSS Preprocessors: Sass/SCSS for advanced styling

Build Tools: Webpack, Vite, or Parcel for professional workflows

Version Control: Advanced Git and GitHub workflows

Portfolio Highlights

By course completion, students will have:

4 major responsive websites showcasing different techniques

Professional portfolio site ready for job applications

GitHub repository with clean, documented code

Live deployed sites using GitHub Pages or Netlify

Design system with reusable components

Success Metrics

By Week 1: Create well-structured HTML pages with semantic markup

By Week 2: Apply comprehensive CSS styling and understand the box model

By Week 3: Build responsive layouts using Flexbox and CSS Grid

By Week 4: Develop professional-quality websites with modern CSS techniques

Final Competency: Students can independently design and develop professional websites, ready to learn
JavaScript and advance to full-stack development or specialize in frontend frameworks.

Note: This intensive program requires 2-3 hours daily commitment. Success depends on consistent
practice and completion of all hands-on exercises. The curriculum emphasizes modern web standards
and prepares students for real-world frontend development work.

30-Day JavaScript Training Syllabus: Basic to Advanced

Course Overview

This intensive 30-day program transforms complete beginners into proficient JavaScript developers. Each
day builds upon previous concepts with hands-on coding exercises, DOM manipulation, and modern web
development practices.

Daily Structure: 3-4 hours (2 hours theory + 1-2 hours hands-on practice) Target Audience: Complete
beginners to programming and web development Prerequisites: Basic HTML/CSS knowledge
recommended but not required

WEEK 1: JAVASCRIPT FUNDAMENTALS (Days 1-7)

Day 1: Setup & JavaScript Basics

Setting up development environment (VS Code, browser dev tools)

Where JavaScript runs (browser vs Node.js)

Linking JavaScript to HTML (script tags, external files)

Console methods and debugging basics

Writing your first JavaScript program

Practice: Interactive "Hello World" with alert, prompt, and console

Day 2: Variables & Data Types

Variable declarations (var, let, const)

Primitive data types: number, string, boolean, undefined, null

Dynamic typing and type checking with typeof

Variable naming conventions and best practices

Template literals and string interpolation

Practice: Build a personal info collector with different data types

Day 3: Operators & Expressions

Arithmetic operators (+, -, *, /, %, **)

Assignment operators (=, +=, -=, etc.)

Comparison operators (==, ===, !=, !==, <, >, etc.)

Logical operators (&&, ||, !)

Operator precedence and associativity

Practice: Create an advanced calculator with multiple operations

Day 4: Strings & String Methods

String creation and manipulation

String indexing and character access

Common string methods (slice, substring, charAt, indexOf, etc.)

String searching and replacing

Regular expressions introduction

Practice: Build a text analyzer (word count, character frequency)

Day 5: Control Flow - Conditionals

if, else if, else statements

Nested conditionals

Switch statements

Ternary operator

Truthy and falsy values

Practice: Create a grade calculator and decision-making app

Day 6: Control Flow - Loops

for loops (traditional and for...in)

while and do...while loops

Loop control: break and continue

Nested loops

for...of loops introduction

Practice: Pattern generators and multiplication tables

Day 7: Week 1 Review & Project

Review all fundamental concepts

Debugging techniques and error types

Major Project: Interactive Quiz Application
Multiple choice questions with scoring

Dynamic feedback based on answers

Progress tracking and final results

WEEK 2: FUNCTIONS & ARRAYS (Days 8-14)

Day 8: Functions - Basics

Function declarations vs expressions

Parameters and arguments

Return statements and return values

Function scope and hoisting

Anonymous functions

Practice: Create a utility functions library

Day 9: Functions - Advanced Concepts

Arrow functions (ES6)

Default parameters

Rest parameters (...args)

Functions as first-class objects

Callback functions introduction

Practice: Build a mathematical operations toolkit

Day 10: Arrays - Fundamentals

Creating and accessing arrays

Array indexing and length property

Adding/removing elements (push, pop, shift, unshift)

Array methods: slice, splice, concat

Multi-dimensional arrays

Practice: Create a dynamic to-do list manager

Day 11: Array Methods & Iteration

Higher-order array methods: forEach, map, filter

find, findIndex, some, every

reduce method for aggregation

sort method and custom sorting

Practice: Data processing and filtering application

Day 12: Objects - Fundamentals

Object creation and property access

Dot notation vs bracket notation

Adding, modifying, and deleting properties

Methods in objects

this keyword introduction

Practice: Personal contact book with object storage

Day 13: Objects - Advanced Concepts

Object destructuring

Object methods: Object.keys(), Object.values(), Object.entries()

Nested objects and complex data structures

JSON: parsing and stringifying

Practice: Data transformation and API simulation

Day 14: Week 2 Review & Project

Integration of functions, arrays, and objects

Major Project: Expense Tracker Application
Add/edit/delete expenses with functions

Categorization using objects

Filtering and analysis using array methods

Local storage for data persistence

WEEK 3: DOM MANIPULATION & WEB APIS (Days 15-21)

Day 15: DOM Introduction & Selection

Understanding the DOM tree

Selecting elements: getElementById, querySelector, querySelectorAll

Element properties: innerHTML, textContent, value

NodeList vs HTMLCollection

Practice: Interactive webpage content manipulator

Day 16: DOM Manipulation & Styling

Creating and removing elements

appendChild, insertBefore, replaceChild

Modifying CSS classes and styles

Setting and getting attributes

Practice: Dynamic content generator with styling

Day 17: Event Handling

addEventListener and event types

Event object and event properties

Event bubbling and capturing

Preventing default behavior

Form events and validation

Practice: Interactive form with real-time validation

Day 18: Advanced DOM & Browser APIs

Local Storage and Session Storage

Working with forms and form data

Timer functions: setTimeout, setInterval

Date object and time manipulation

Practice: Pomodoro timer with data persistence

Day 19: AJAX & Fetch API

Understanding asynchronous JavaScript

XMLHttpRequest basics

Fetch API for HTTP requests

Working with JSON responses

Error handling in async operations

Practice: Weather app using external API

Day 20: Promises & Async/Await

Understanding Promises

Promise methods: then, catch, finally

Promise.all and Promise.race

async/await syntax (ES2017)

Error handling with try/catch

Practice: Multi-API data aggregation app

Day 21: Week 3 Review & Project

DOM manipulation and API integration

Major Project: Task Management Dashboard
Full CRUD operations with DOM manipulation

Drag-and-drop functionality

Data persistence with localStorage

Integration with external APIs for additional features

WEEK 4: ADVANCED CONCEPTS & MODERN JAVASCRIPT (Days 22-28)

Day 22: ES6+ Features

let, const, and block scope

Template literals and tagged templates

Destructuring assignment (arrays and objects)

Spread operator and rest parameters

Enhanced object literals

Practice: Refactor previous projects using ES6+ features

Day 23: Classes & Object-Oriented Programming

ES6 Classes and constructor functions

Instance methods and static methods

Inheritance with extends and super

Private fields and methods (ES2022)

Getters and setters

Practice: Game character system using classes

Day 24: Closures & Advanced Functions

Understanding closures and lexical scope

Practical applications of closures

Module pattern and IIFE

Higher-order functions and function composition

Currying and partial application

Practice: Function utilities and module creation

Day 25: Error Handling & Debugging

Types of errors (syntax, runtime, logical)

try, catch, finally, and throw statements

Creating custom error types

Browser debugging tools mastery

Console methods for debugging

Practice: Robust error handling for previous projects

Day 26: Modules & Build Tools

ES6 Modules (import/export)

CommonJS modules (require/module.exports)

Module bundlers introduction (Webpack basics)

NPM and package management

Code splitting and lazy loading

Practice: Modular application architecture

Day 27: Testing & Code Quality

Unit testing concepts

Jest testing framework basics

Test-driven development (TDD) introduction

Code linting with ESLint

Code formatting with Prettier

Practice: Add tests to existing projects

Day 28: Week 4 Review & Performance

Advanced JavaScript concepts review

Performance optimization techniques

Memory management and garbage collection

Code profiling and optimization

Major Project: Complete Web Application
Modern JavaScript features throughout

Modular architecture

Comprehensive error handling

Performance optimizations

DAYS 29-30: SPECIALIZATION & CAPSTONE

Day 29: Framework/Library Introduction

Choose one specialization track:

Track A: React Basics

Component-based architecture

JSX and virtual DOM

State and props

Event handling in React

Project: Interactive React component library

Track B: Node.js Backend

Setting up Node.js server

Express.js basics

API creation and routing

File system operations

Project: RESTful API with Express

Track C: Advanced Frontend

Web Components and Shadow DOM

Progressive Web App (PWA) concepts

Service Workers basics

Advanced CSS-in-JS techniques

Project: PWA with offline functionality

Day 30: Capstone Project & Career Preparation

Capstone Project Options:
Full-stack web application with API integration

Interactive data visualization dashboard

Real-time chat application with WebSockets

Browser-based game with complex interactions

Code review and optimization

Deployment strategies (Netlify, Vercel, Heroku)

Portfolio development

Career Preparation:
JavaScript ecosystem overview

Interview preparation and coding challenges

Open source contribution guidance

Next learning steps and advanced topics

Daily Assessment & Practice

Daily Deliverables:

1. Concept Quiz (10 minutes): Interactive JavaScript challenges

2. Coding Exercise (30 minutes): Hands-on problem solving

3. Mini Project (60 minutes): Practical web development task

4. Code Review (20 minutes): Peer review or self-assessment

Weekly Projects:

Week 1: Interactive Quiz Application

Week 2: Expense Tracker Application

Week 3: Task Management Dashboard

Week 4: Complete Web Application

Final: Capstone Project

Assessment Criteria:

Functionality (35%): Does the code work as expected?

Code Quality (25%): Clean, readable, maintainable code

User Experience (20%): Intuitive and responsive interfaces

Problem Solving (15%): Effective approach to challenges

Modern Practices (5%): Use of current JavaScript features

Resources & Tools

Required Software:

Modern web browser (Chrome/Firefox with dev tools)

VS Code with JavaScript extensions

Node.js (latest LTS version)

Git for version control

Recommended Extensions:

JavaScript (ES6) code snippets

Live Server for VS Code

Debugger for Chrome

ESLint and Prettier

Essential Resources:

MDN Web Docs (JavaScript reference)

JavaScript.info (comprehensive tutorial)

freeCodeCamp JavaScript curriculum

Eloquent JavaScript (online book)

Practice Platforms:

Codepen for quick experiments

JSFiddle for code sharing

LeetCode JavaScript problems

HackerRank JavaScript domain

Exercism JavaScript track

APIs for Practice:

JSONPlaceholder (fake REST API)

OpenWeatherMap API

The Dog API

Random User Generator API

Success Metrics

By Week 1: Students can create interactive web pages with basic JavaScript

By Week 2: Students can build dynamic applications using functions and data
structures

By Week 3: Students can create full interactive web applications with DOM
manipulation and API integration

By Week 4: Students can develop modern JavaScript applications using advanced
concepts and best practices

By Day 30: Students can independently build complete web applications and are ready
for framework learning

Final Competencies:

Write clean, modern JavaScript code (ES6+)

Manipulate the DOM effectively

Handle asynchronous operations and API calls

Debug and troubleshoot JavaScript applications

Implement object-oriented programming concepts

Create responsive and interactive user interfaces

Use modern development tools and workflows

Ready for advanced frameworks and libraries

Project Portfolio

By course completion, students will have:

4 major weekly projects

1 comprehensive capstone project

25+ daily mini-projects and exercises

A complete portfolio ready for job applications

GitHub repository with clean, documented code

Note: This syllabus requires 3-4 hours of daily commitment and assumes basic familiarity with HTML/CSS.
Adjust pacing based on student progress and provide additional support for complex asynchronous
concepts.

30-Day Python Training Syllabus: Basic to Advanced

Course Overview

This intensive 30-day program transforms complete beginners into proficient Python developers. Each
day builds upon previous concepts with hands-on coding exercises and real-world projects.

Daily Structure: 3-4 hours (2 hours theory + 1-2 hours hands-on practice) Target Audience: Complete
beginners to programming Prerequisites: Basic computer literacy, willingness to code daily

WEEK 1: FOUNDATIONS (Days 1-7)

Day 1: Python Setup & Environment

Installing Python (latest version)

Setting up IDE (VS Code/PyCharm)

Understanding the Python interpreter

Writing your first "Hello World" program

Introduction to REPL (Read-Eval-Print Loop)

Practice: Basic print statements and comments

Day 2: Variables, Data Types & Input

Variables and naming conventions

Basic data types: int, float, str, bool

Type conversion and type checking

Getting user input with input()

String formatting basics

Practice: Create a simple calculator for basic operations

Day 3: Strings & String Methods

String creation and manipulation

String indexing and slicing

Common string methods (upper, lower, strip, replace, etc.)

String concatenation and f-strings

Escape characters

Practice: Build a text processor that manipulates user input

Day 4: Numbers & Mathematical Operations

Arithmetic operators (+, -, *, /, //, %, **)

Order of operations

Math module introduction

Random module basics

Working with complex numbers

Practice: Create a mortgage calculator

Day 5: Boolean Logic & Conditionals

Boolean values and operations

Comparison operators

Logical operators (and, or, not)

if, elif, else statements

Nested conditions

Practice: Build a grade calculator with letter grades

Day 6: Lists & List Methods

Creating and accessing lists

List indexing and slicing

List methods (append, insert, remove, pop, etc.)

List comprehensions (introduction)

Nested lists

Practice: Create a to-do list application

Day 7: Week 1 Review & Project

Review all concepts from Week 1

Debugging techniques

Major Project: Personal Information Manager
Store and display personal contacts

Add, edit, delete functionality

Search capabilities

WEEK 2: CONTROL STRUCTURES & DATA STRUCTURES (Days 8-14)

Day 8: Loops - For Loops

Understanding iteration

for loops with ranges

Iterating over lists and strings

Nested for loops

Loop control: break and continue

Practice: Create multiplication tables generator

Day 9: Loops - While Loops

While loop syntax and logic

Infinite loops and how to avoid them

Loop counters and accumulators

Combining while loops with user input

Practice: Build a number guessing game

Day 10: Tuples & Sets

Creating and using tuples

Tuple unpacking

When to use tuples vs lists

Sets: creation, methods, and operations

Set operations: union, intersection, difference

Practice: Create a unique word counter from text

Day 11: Dictionaries

Dictionary creation and access

Dictionary methods (keys, values, items, get, etc.)

Nested dictionaries

Dictionary comprehensions

Practice: Build a student grade management system

Day 12: Functions - Basics

Defining functions with def

Parameters and arguments

Return statements

Local vs global scope

Default parameters

Practice: Create a library of utility functions

Day 13: Functions - Advanced

*args and **kwargs

Lambda functions

Higher-order functions

Recursion basics

Function as first-class objects

Practice: Build a text analysis toolkit with multiple functions

Day 14: Week 2 Review & Project

Review control structures and data types

Code organization best practices

Major Project: Inventory Management System
Add/remove items with functions

Search and filter capabilities

Data persistence using dictionaries

WEEK 3: FILE I/O & ERROR HANDLING (Days 15-21)

Day 15: File Input/Output

Opening and closing files

Reading files (read, readline, readlines)

Writing to files

File modes (r, w, a, r+, etc.)

Working with file paths

Practice: Create a file-based note-taking application

Day 16: Working with CSV & JSON

CSV module: reading and writing CSV files

JSON module: parsing and creating JSON

Converting between data formats

Handling malformed data

Practice: Build a data converter (CSV ↔ JSON)

Day 17: Exception Handling

Understanding exceptions and error types

try, except, else, finally blocks

Handling specific exceptions

Creating custom exceptions

Best practices for error handling

Practice: Add robust error handling to previous projects

Day 18: Regular Expressions

Introduction to regex patterns

re module: search, match, findall, sub

Common regex patterns

Groups and capturing

Practical regex applications

Practice: Build an email and phone number validator

Day 19: Modules & Packages

Importing modules (import, from...import, as)

Creating your own modules

Understanding name == "main"

Package structure and init.py

Virtual environments introduction

Practice: Organize previous code into reusable modules

Day 20: Date, Time & OS Operations

datetime module: working with dates and times

time module: delays and timing

os module: file system operations

pathlib for modern path handling

Practice: Create a file organizer that sorts files by date

Day 21: Week 3 Review & Project

Integration of file I/O, error handling, and modules

Major Project: Personal Finance Tracker
Read/write transaction data to CSV

Categorize expenses with regex

Generate monthly reports

Robust error handling throughout

WEEK 4: OBJECT-ORIENTED PROGRAMMING (Days 22-28)

Day 22: Classes & Objects - Basics

Understanding OOP concepts

Creating classes and objects

init method and self

Instance attributes and methods

Class vs instance attributes

Practice: Create a Book class for a library system

Day 23: Inheritance & Polymorphism

Single inheritance

Method overriding

super() function

Multiple inheritance basics

Polymorphism examples

Practice: Extend library system with different media types

Day 24: Special Methods & Properties

Magic methods (str, repr, len, etc.)

Operator overloading

Property decorators (@property)

Class methods and static methods

Practice: Create a Vector class with mathematical operations

Day 25: Advanced OOP Concepts

Encapsulation and private attributes

Abstract base classes

Composition vs inheritance

Design patterns introduction

Practice: Refactor previous projects using OOP principles

Day 26: Iterators & Generators

Understanding iteration protocol

Creating custom iterators

Generator functions and yield

Generator expressions

Memory efficiency with generators

Practice: Build a large file processor using generators

Day 27: Decorators & Context Managers

Function decorators

Class decorators

Built-in decorators (@property, @staticmethod, etc.)

Context managers and with statement

Creating custom context managers

Practice: Add logging and timing decorators to existing code

Day 28: Week 4 Review & Integration

Advanced OOP review

Code refactoring techniques

Major Project: Complete Application Framework
Design a banking system with multiple account types

Implement inheritance hierarchy

Add transaction logging with decorators

Include comprehensive error handling

DAYS 29-30: FINAL PROJECTS & SPECIALIZATION

Day 29: Libraries & Specialization

Choose one specialization track:

Track A: Web Development

requests library for HTTP requests

Flask basics for web applications

HTML templating

Project: Personal portfolio website

Track B: Data Analysis

pandas for data manipulation

matplotlib for visualization

Working with real datasets

Project: Data analysis dashboard

Track C: Automation

selenium for web automation

schedule for task scheduling

Email automation with smtplib

Project: Personal automation suite

Day 30: Capstone Project & Next Steps

Capstone Project: Comprehensive application combining all learned concepts
GUI application using tkinter, OR

Web scraper with data analysis, OR

API-based service application

Code review and optimization

Testing introduction (unittest module)

Deployment basics

Next Steps Planning:
Advanced Python concepts to explore

Specialization roadmaps

Open source contribution guidance

Career development paths

Daily Assessment & Practice

Daily Deliverables:

1. Concept Quiz (10 minutes): Quick multiple-choice questions

2. Coding Exercise (30 minutes): Hands-on problem solving

3. Mini Project (60 minutes): Practical application

4. Code Review (20 minutes): Peer or self-review

Weekly Projects:

Week 1: Personal Information Manager

Week 2: Inventory Management System

Week 3: Personal Finance Tracker

Week 4: Banking System Framework

Final: Capstone Project

Assessment Criteria:

Functionality (40%): Does the code work as expected?

Code Quality (30%): Clean, readable, well-commented code

Problem Solving (20%): Approach to breaking down problems

Creativity (10%): Innovative solutions and features

Resources & Tools

Required Software:

Python 3.9+

VS Code or PyCharm Community

Git for version control

Recommended Reading:

"Automate the Boring Stuff with Python" - Al Sweigart

"Python Crash Course" - Eric Matthes

"Effective Python" - Brett Slatkin

Online Resources:

Python.org documentation

Real Python tutorials

LeetCode for coding practice

GitHub for code examples

Practice Platforms:

HackerRank Python domain

Codewars Python challenges

Project Euler for mathematical problems

Success Metrics

By Week 1: Students can create simple programs with variables, conditionals, and lists

By Week 2: Students can build applications using functions and complex data
structures

By Week 3: Students can create file-based applications with proper error handling

By Week 4: Students can design object-oriented applications with clean architecture

By Day 30: Students can independently build complete Python applications

Final Competencies:

Write clean, maintainable Python code

Debug and troubleshoot effectively

Use appropriate data structures for different problems

Implement object-oriented design principles

Handle files and external data sources

Create user-friendly applications

Ready for intermediate/advanced Python concepts

Note: This syllabus is intensive and requires 3-4 hours of daily commitment. Adjust pacing based on
student progress and provide additional support for challenging concepts.

30-Day R Training: From Basic to Advanced

This intensive 30-day syllabus is designed to equip you with the skills to effectively use R for

data analysis, visualization, and statistical modeling. We will progress from the fundamentals of

the R language to advanced techniques, with a strong emphasis on practical, hands-on

application.

Week 1: R Fundamentals & Core Data Structures

The goal this week is to get you set up and comfortable with the R environment, its syntax, and

its primary ways of storing data.

• Day 1-2: Introduction to R and RStudio

o Topics: What is R? Installing R and RStudio. Navigating the RStudio IDE

(Console, Script, Environment, Plots panes). Basic arithmetic operations.

Assigning variables.

o Practice: Use R as a calculator. Create variables to store numbers and text.

Explore the RStudio interface.

• Day 3-4: R Data Structures

o Topics: Introduction to the core data structures: Vectors (numeric, character,

logical), Matrices, Arrays, Lists, and Data Frames.

o Practice: Create each type of data structure. Learn to access elements using

indexing ([], [[]], $).

• Day 5: Reading and Writing Data

o Topics: Importing data from external files, focusing on CSV files (read.csv()).

Exporting data frames to CSV files (write.csv()).

o Practice: Find a simple dataset online (as a CSV) and import it into R as a data

frame. Inspect it using head(), str(), and summary().

• Day 6: Packages in R

o Topics: Understanding the power of R packages. How to install (install.packages())

and load (library()) packages. Introduction to the tidyverse.

o Practice: Install and load the tidyverse package, which includes dplyr and ggplot2.

• Day 7: Basic Data Inspection

o Topics: Using functions to understand your data frame: dim(), colnames(),

summary(), str().

o Mini-Project: Import a dataset of your choice, inspect its structure, and write a

small R script that documents its dimensions and column types.

Week 2: Data Manipulation & Visualization with the Tidyverse

This week is all about learning the modern, powerful tools for transforming and visualizing your

data.

• Day 8-10: Data Manipulation with dplyr

o Topics: The core dplyr "verbs": select(), filter(), arrange(), mutate(), and summarise().

Chaining operations with the pipe operator (%>%).

o Practice: Using a dataset, select specific columns, filter for rows that meet certain

criteria, create new columns, and calculate summary statistics.

• Day 11-13: Data Visualization with ggplot2

o Topics: The Grammar of Graphics. Building plots layer by layer. Key

components: ggplot(), aesthetics (aes()), and geometries (geom_point(), geom_bar(),

geom_line(), geom_histogram()).

o Practice: Create various plots to explore relationships in your data. Customize

plots with titles, labels, and colors.

• Day 14: Mid-point Project

o Project: Exploratory Data Analysis (EDA).

o Task: Choose a dataset (e.g., the built-in iris or mtcars dataset), and use dplyr and

ggplot2 to clean, transform, and create at least five insightful visualizations.

Summarize your findings.

Week 3: Programming, Statistics, & Modeling

Now we'll dive into the statistical heart of R and learn how to write more structured code.

• Day 15-16: Control Flow & Functions

o Topics: Writing if/else statements and for loops. Writing your own custom

functions to make your code reusable.

o Practice: Write a function that takes a numeric vector and returns its mean and

standard deviation. Use a loop to iterate through the columns of a data frame.

• Day 17-18: Fundamental Statistics in R

o Topics: Descriptive statistics (mean, median, standard deviation). Correlation

(cor()). Introduction to hypothesis testing: t-tests (t.test()) and Chi-squared tests

(chisq.test()).

o Practice: Calculate correlations between variables in a dataset. Perform a t-test to

compare the means of two groups.

• Day 19-21: Statistical Modeling

o Topics: Introduction to linear regression models (lm()). Understanding model

formulas (y ~ x). Interpreting model summaries (summary()). Making predictions

(predict()).

o Practice: Build a simple linear regression model to predict one variable from

another. Plot the data and the regression line.

• Day 22-23: Data Tidying with tidyr

o Topics: The concept of "tidy" data. Reshaping data from wide to long format

(pivot_longer()) and long to wide (pivot_wider()).

o Project: Find a "messy" dataset and use tidyr and dplyr to clean and reshape it into

a tidy format suitable for analysis.

Week 4: Advanced Topics & Communicating Results

The final week focuses on advanced techniques and sharing your work with others.

• Day 24-25: Introduction to R Markdown

o Topics: Combining R code, text, and output into a single, reproducible document.

Creating reports in HTML, PDF, or Word formats.

o Practice: Convert your Mid-point EDA project into a polished R Markdown

report.

• Day 26-27: Introduction to Shiny

o Topics: Building interactive web applications directly from R. Understanding the

basic structure of a Shiny app (ui and server).

o Practice: Create a simple Shiny app that allows a user to select a variable from a

dataset and view its histogram.

• Day 28: Working with Dates and Text

o Topics: A brief introduction to the lubridate package for handling dates and the

stringr package for working with text data.

o Practice: Parse date strings into date objects. Use regular expressions to find

patterns in text.

• Day 29-30: Final Capstone Project & Review

o Project: Build an interactive data dashboard.

o Task: Choose a new, interesting dataset. Perform a full exploratory data analysis.

Build a simple 1-page Shiny app or a detailed R Markdown report that presents

your key findings with interactive elements (e.g., plots, tables).

o Review: Reflect on the entire 30-day journey, review key concepts, and identify

areas for further learning.

60-Hour Advanced Java Training Program

Course Overview

This intensive advanced Java program transforms intermediate Java developers into enterprise-level
professionals. The curriculum covers advanced Java concepts, Spring ecosystem, microservices, and
modern architectural patterns.

Total Duration: 60 hours (4 weeks intensive or 8 weeks part-time) Format: 12 modules of 5 hours each
Prerequisites: Solid Java fundamentals, OOP concepts, basic Spring knowledge Target Audience: Mid-
level developers seeking senior/architect roles

MODULE 1: ADVANCED JAVA LANGUAGE FEATURES (5 Hours)

Hour 1: Modern Java Features (Java 11+)

Local variable type inference (var keyword)

Text blocks and multiline strings

Switch expressions and pattern matching

Records and sealed classes

HTTP Client API and new collection methods

Hour 2: Advanced Generics & Functional Programming

Bounded wildcards and PECS principle

Generic type erasure and reflection

Advanced lambda expressions and method references

Function composition and custom functional interfaces

Monads and Optional advanced patterns

Hour 3: Stream API Mastery

Complex stream operations and custom collectors

Parallel streams and performance considerations

Stream debugging and troubleshooting

Integration with reactive streams

Advanced reduction operations

Hour 4: Concurrency Fundamentals

Memory model and happens-before relationships

CompletableFuture advanced patterns

Concurrent collections and atomic operations

Lock-free programming concepts

Virtual threads (Project Loom) introduction

Hour 5: Hands-on Practice

Project: Advanced Data Processing Pipeline

Modern Java features implementation

Complex stream operations with parallel processing

Concurrent data processing patterns

MODULE 2: JVM INTERNALS & PERFORMANCE (5 Hours)

Hour 6: JVM Architecture Deep Dive

Heap structure and memory areas

Garbage collection algorithms (G1, ZGC, Shenandoah)

JIT compilation and optimization

Class loading mechanism and metaspace

Hour 7: Performance Profiling & Optimization

JFR (Java Flight Recorder) usage

Memory profiling with Eclipse MAT

CPU profiling and flame graphs

GC tuning parameters and strategies

Hour 8: Application Performance Tuning

Benchmark writing with JMH

Memory leak detection and prevention

Method inlining and escape analysis

Custom JVM flags and optimization

Hour 9: Monitoring & Observability

Application Performance Monitoring (APM)

Metrics collection with Micrometer

JVM metrics and health indicators

Performance regression detection

Hour 10: Hands-on Practice

Project: JVM Performance Analysis Suite

Memory leak detection and fixing

GC tuning for specific workloads

Performance benchmarking implementation

MODULE 3: SPRING FRAMEWORK ADVANCED (5 Hours)

Hour 11: Spring Core & Configuration

Advanced dependency injection patterns

Custom bean post-processors and factory beans

Conditional bean registration and profiles

Application context hierarchies

Hour 12: Spring Boot Deep Dive

Auto-configuration mechanisms

Custom starters development

Actuator endpoints customization

External configuration strategies

Spring Boot testing strategies

Hour 13: Spring Security Advanced

OAuth 2.0 and JWT implementation

Method-level security

Custom authentication providers

Security filter chain customization

Advanced CORS and CSRF configuration

Hour 14: Spring AOP & Transaction Management

AspectJ vs Spring AOP

Custom aspects and pointcut expressions

Advanced transaction management

Distributed transaction patterns

Hour 15: Hands-on Practice

Project: Enterprise Spring Application

Custom auto-configuration development

Advanced security implementation

AOP-based auditing system

MODULE 4: DATABASE & PERSISTENCE MASTERY (5 Hours)

Hour 16: JPA & Hibernate Advanced

Advanced entity mappings and inheritance

Performance optimization techniques

Custom types and user types

Second-level cache configuration

Batch processing and bulk operations

Hour 17: Spring Data Advanced

Custom repository implementations

Specifications and Criteria API

Projections and DTOs optimization

Multi-database configurations

Reactive data access with R2DBC

Hour 18: Database Performance & Transactions

Query optimization and execution plans

Advanced indexing strategies

Connection pool tuning

Distributed transactions (XA)

Event sourcing and CQRS patterns

Hour 19: NoSQL Integration

MongoDB with Spring Data

Redis for caching and session management

Elasticsearch integration

Multi-database transaction coordination

Hour 20: Hands-on Practice

Project: High-Performance Data Layer

Custom JPA extensions

Multi-database application

Caching strategy implementation

MODULE 5: MICROSERVICES ARCHITECTURE (5 Hours)

Hour 21: Microservices Design Patterns

Service decomposition strategies

API gateway and service mesh patterns

Circuit breaker and bulkhead patterns

Saga pattern for distributed transactions

Hour 22: Service Communication

RESTful API advanced design

GraphQL implementation

gRPC and protocol buffers

Asynchronous messaging patterns

Hour 23: Service Discovery & Load Balancing

Service registry patterns (Eureka, Consul)

Client-side vs server-side load balancing

Health checks and service monitoring

Dynamic configuration management

Hour 24: Resilience & Fault Tolerance

Circuit breaker implementation (Resilience4j)

Retry patterns and exponential backoff

Timeout and bulkhead patterns

Chaos engineering principles

Hour 25: Hands-on Practice

Project: Microservices Ecosystem

Complete microservices implementation

Service discovery and load balancing

Resilience patterns integration

MODULE 6: MESSAGE-DRIVEN ARCHITECTURE (5 Hours)

Hour 26: Apache Kafka Deep Dive

Kafka architecture and producer/consumer patterns

Kafka Streams for stream processing

Schema registry and Avro integration

Kafka Connect for data integration

Hour 27: Event-Driven Architecture

Domain events and event storming

Event sourcing implementation

CQRS pattern with messaging

Saga orchestration vs choreography

Hour 28: Enterprise Integration Patterns

Message routing and transformation

Dead letter queues and error handling

Idempotency and exactly-once processing

Message serialization strategies

Hour 29: RabbitMQ & Advanced Messaging

RabbitMQ clustering and high availability

Message acknowledgments and reliability

Performance tuning and monitoring

Integration with Spring AMQP

Hour 30: Hands-on Practice

Project: Event-Driven Microservices

Kafka-based event streaming platform

CQRS with event sourcing implementation

Message-driven saga pattern

MODULE 7: CLOUD-NATIVE DEVELOPMENT (5 Hours)

Hour 31: Containerization & Docker

Advanced Dockerfile optimization

Multi-stage builds and security

Container orchestration patterns

Docker Compose for development

Hour 32: Kubernetes for Java Apps

Kubernetes deployment strategies

ConfigMaps and Secrets management

Service mesh integration (Istio)

Horizontal Pod Autoscaling

Hour 33: Cloud Deployment Patterns

Blue-green and canary deployments

Infrastructure as Code (Terraform)

CI/CD pipelines for cloud

Environment-specific configurations

Hour 34: Observability & Monitoring

Distributed tracing with Jaeger

Metrics with Prometheus and Grafana

Log aggregation (ELK stack)

Application monitoring strategies

Hour 35: Hands-on Practice

Project: Cloud-Native Java Application

Complete Kubernetes deployment

Monitoring and observability setup

CI/CD pipeline implementation

MODULE 8: REACTIVE PROGRAMMING (5 Hours)

Hour 36: Reactive Fundamentals

Reactive programming principles

Spring WebFlux vs Spring MVC

Reactive streams specification

Backpressure handling strategies

Hour 37: Reactor Core Advanced

Advanced operators and transformations

Hot vs cold publishers

Custom operators creation

Error handling in reactive streams

Hour 38: Reactive Data Access

R2DBC for reactive databases

Reactive MongoDB integration

Reactive caching with Redis

Non-blocking I/O patterns

Hour 39: Reactive Microservices

Inter-service reactive communication

WebClient for HTTP calls

Server-Sent Events (SSE)

WebSocket integration

Hour 40: Hands-on Practice

Project: Fully Reactive Application

Reactive web layer implementation

Non-blocking database operations

Real-time data streaming

MODULE 9: SECURITY & BEST PRACTICES (5 Hours)

Hour 41: Application Security

OWASP Top 10 for Java applications

Secure coding practices

Input validation and sanitization

Dependency vulnerability scanning

Hour 42: Authentication & Authorization

OAuth 2.0 flows and implementation

JWT tokens and session management

Role-based access control (RBAC)

OpenID Connect integration

Hour 43: Cryptography & Data Protection

JCE provider and encryption

Key management strategies

Secure communication (TLS/SSL)

Data privacy and GDPR compliance

Hour 44: Security Testing & Monitoring

Security testing automation

Penetration testing basics

Security event logging

Compliance frameworks (SOX, PCI-DSS)

Hour 45: Hands-on Practice

Project: Secure Enterprise Application

Complete OAuth 2.0 implementation

Security testing suite

Compliance monitoring system

MODULE 10: TESTING STRATEGIES ADVANCED (5 Hours)

Hour 46: Advanced Unit Testing

Mockito advanced features and patterns

Test containers for integration testing

Property-based testing with jqwik

Mutation testing with PIT

Hour 47: Integration & Contract Testing

Spring Boot test slices

TestContainers with databases

Contract testing with Pact

API testing strategies

Hour 48: Performance & Load Testing

JMeter for load testing

Performance testing in CI/CD

Gatling for high-performance testing

Performance regression detection

Hour 49: Test Automation & Quality

Test pyramid implementation

Continuous testing strategies

Code coverage and quality metrics

Flaky test management

Hour 50: Hands-on Practice

Project: Comprehensive Testing Strategy

Multi-layer testing implementation

Performance testing automation

Quality gate enforcement

MODULE 11: DESIGN PATTERNS & ARCHITECTURE (5 Hours)

Hour 51: Advanced Design Patterns

Domain-Driven Design (DDD) patterns

Hexagonal architecture implementation

Clean architecture principles

CQRS and Event Sourcing patterns

Hour 52: Enterprise Architecture

Microservices vs monolith decisions

Service mesh architecture

API-first design principles

Legacy system integration

Hour 53: Code Quality & Refactoring

Advanced refactoring techniques

Technical debt management

Code metrics and analysis

Architecture decision records (ADRs)

Hour 54: Scalability Patterns

Horizontal vs vertical scaling

Caching strategies (multi-level)

Database sharding patterns

Load balancing algorithms

Hour 55: Hands-on Practice

Project: Architecture Redesign

Monolith to microservices migration

DDD implementation

Scalability improvements

MODULE 12: CAPSTONE PROJECT & ADVANCED TOPICS (5 Hours)

Hour 56: Project Planning & Architecture

Choose a comprehensive capstone project:

Option A: E-commerce Microservices Platform

Option B: Real-time Analytics System

Option C: DevOps Automation Platform

Option D: Financial Trading System

Hour 57: Implementation & Integration

Apply multiple advanced concepts

Implement chosen architecture

Integration of all learned technologies

Performance optimization

Hour 58: Testing & Quality Assurance

Comprehensive testing strategy

Performance benchmarking

Security testing

Code review and optimization

Hour 59: Deployment & Monitoring

Cloud deployment setup

Monitoring and observability

CI/CD pipeline implementation

Documentation and maintenance guides

Hour 60: Presentation & Career Planning

Project presentation and demo

Code review and feedback

Career advancement strategies

Certification roadmap (Oracle Java, Spring)

Open source contribution planning

Assessment & Projects

Module Projects (12 projects total):

1. Advanced Data Processing Pipeline

2. JVM Performance Analysis Suite

3. Enterprise Spring Application

4. High-Performance Data Layer

5. Microservices Ecosystem

6. Event-Driven Microservices Platform

7. Cloud-Native Java Application

8. Fully Reactive Application

9. Secure Enterprise Application

10. Comprehensive Testing Strategy

11. Architecture Redesign Project

12. Comprehensive Capstone Project

Assessment Criteria:

Technical Proficiency (40%): Advanced Java skills demonstration

Architecture & Design (30%): System design and patterns application

Code Quality (20%): Clean code, testing, and documentation

Problem Solving (10%): Creative solutions and optimization

Tools & Technologies Covered

Core Technologies:

Java 11+ features

Spring Framework 6+ & Spring Boot 3+

JPA/Hibernate, Spring Data

Apache Kafka, RabbitMQ

Docker, Kubernetes

Development Tools:

IntelliJ IDEA Ultimate

Maven/Gradle advanced features

Git workflows and CI/CD

JProfiler, VisualVM

SonarQube, SpotBugs

Testing Frameworks:

JUnit 5, TestNG

Mockito, WireMock

TestContainers

JMeter, Gatling

Pact for contract testing

Cloud & DevOps:

AWS/Azure/GCP services

Terraform, Ansible

Jenkins, GitLab CI

Prometheus, Grafana

ELK Stack

Career Outcomes

Target Positions:

Senior Java Developer: Advanced backend development

Java Architect: System design and architecture

Microservices Architect: Distributed systems design

DevOps Engineer: Java application deployment and ops

Technical Lead: Team leadership with deep Java expertise

Skills Acquired:

Master advanced Java language features

Design and implement microservices architectures

Optimize JVM performance and troubleshoot issues

Build reactive and event-driven applications

Implement comprehensive security measures

Lead technical decision-making and architecture design

Certification Preparation:

Oracle Certified Professional Java SE Developer

Spring Professional Certification

AWS/Azure Java Developer Certifications

Kubernetes Application Developer (CKAD)

Prerequisites & Recommendations

Required Prerequisites:

3+ years Java development experience

Strong OOP and design pattern knowledge

Basic Spring Framework experience

Understanding of databases and SQL

Familiarity with Git and build tools

Recommended Preparation:

RESTful API development experience

Basic cloud platform knowledge

Understanding of agile development

Command line proficiency

Docker basics

Schedule Options

Intensive Track (4 weeks):

15 hours per week

Daily 3-hour sessions

Weekend project work

Best for dedicated learners

Part-time Track (8 weeks):

7-8 hours per week

Evening/weekend sessions

Flexible project deadlines

Suitable for working professionals

Extended Track (12 weeks):

5 hours per week

Weekend-focused learning

Extended project phases

Maximum flexibility

Note: This advanced program requires significant Java experience and dedication. The curriculum
prepares developers for senior-level positions and provides the foundation for solution architect roles.
Success depends on active participation in hands-on projects and consistent application of learned
concepts.

30-Day Cybersecurity Bootcamp: 60-Hour Intensive Program

Course Overview

This intensive 30-day program provides essential cybersecurity skills for entry-level security positions.
Focused on practical, hands-on learning with industry-standard tools and real-world scenarios.

Total Duration: 60 hours over 30 days (2 hours per day) Format: Daily 2-hour sessions with theory and
hands-on practice Prerequisites: Basic networking and computer literacy Target: Entry-level
cybersecurity positions (SOC Analyst, Security Specialist)

WEEK 1: CYBERSECURITY FOUNDATIONS (Days 1-7)

Day 1: Cybersecurity Fundamentals (2 hours)

Cybersecurity landscape and career paths

CIA Triad and core security principles

Types of threats and threat actors

Lab: Setting up virtual security lab (VirtualBox/VMware)

Day 2: Risk Management & Compliance (2 hours)

Risk assessment basics

Common compliance frameworks (GDPR, HIPAA, PCI-DSS)

Security policies and procedures

Lab: Risk assessment worksheet exercise

Day 3: Cryptography Essentials (2 hours)

Encryption fundamentals (symmetric vs asymmetric)

Hashing and digital signatures

PKI and certificates

Lab: Encryption/decryption exercises with tools

Day 4: Network Security Basics (2 hours)

TCP/IP model and network protocols

Common network attacks

Firewalls and network segmentation

Lab: Wireshark packet analysis

Day 5: Operating System Security (2 hours)

Windows and Linux security models

User management and permissions

System hardening basics

Lab: Windows/Linux security configuration

Day 6: Web Application Security (2 hours)

OWASP Top 10 vulnerabilities

Common web attacks (XSS, SQL injection)

Secure coding practices

Lab: Web vulnerability testing with DVWA

Day 7: Week 1 Review & Assessment (2 hours)

Comprehensive review of all topics

Mini-Project: Basic security assessment report

Hands-on skills validation

WEEK 2: SECURITY TOOLS & TECHNIQUES (Days 8-14)

Day 8: Vulnerability Assessment (2 hours)

Vulnerability vs exploit vs threat

Vulnerability scanning methodologies

Common vulnerability databases (CVE, NVD)

Lab: Nessus vulnerability scanning

Day 9: Penetration Testing Basics (2 hours)

Pen testing methodology and ethics

Information gathering and reconnaissance

Basic exploitation concepts

Lab: Kali Linux introduction and tools

Day 10: Network Monitoring & Analysis (2 hours)

Network monitoring principles

IDS/IPS fundamentals

Traffic analysis techniques

Lab: Suricata IDS configuration and alerts

Day 11: Incident Response Fundamentals (2 hours)

Incident response lifecycle (NIST framework)

Evidence handling and documentation

Communication and escalation

Lab: Incident response scenario simulation

Day 12: Digital Forensics Basics (2 hours)

Digital evidence preservation

File system analysis

Basic forensics tools

Lab: Autopsy forensics investigation

Day 13: Malware Analysis Introduction (2 hours)

Types of malware and delivery methods

Static and dynamic analysis basics

Indicators of Compromise (IoCs)

Lab: Malware analysis in isolated environment

Day 14: Week 2 Review & Project (2 hours)

Integration of security tools and techniques

Project: Complete security investigation case study

WEEK 3: SECURITY OPERATIONS (Days 15-21)

Day 15: Security Operations Center (SOC) (2 hours)

SOC roles and responsibilities

24/7 monitoring operations

Alert triage and escalation procedures

Lab: SOC analyst workflow simulation

Day 16: SIEM Fundamentals (2 hours)

SIEM architecture and components

Log collection and correlation

Use cases and rules creation

Lab: Splunk basic configuration and searches

Day 17: Threat Hunting Basics (2 hours)

Proactive vs reactive security

Threat hunting methodologies

Hypothesis-driven hunting

Lab: Basic threat hunting exercises

Day 18: Identity & Access Management (2 hours)

IAM principles and components

Authentication vs authorization

Multi-factor authentication (MFA)

Lab: Active Directory security assessment

Day 19: Cloud Security Essentials (2 hours)

Cloud service models and shared responsibility

Common cloud security issues

AWS/Azure security basics

Lab: Cloud security configuration review

Day 20: Mobile & Endpoint Security (2 hours)

Endpoint protection strategies

Mobile device security

BYOD policies and controls

Lab: Endpoint security tool configuration

Day 21: Week 3 Review & SOC Project (2 hours)

SOC operations integration

Project: SOC playbook creation and testing

WEEK 4: ADVANCED TOPICS & SPECIALIZATION (Days 22-28)

Day 22: Advanced Threat Detection (2 hours)

APT tactics and techniques

MITRE ATT&CK framework

Behavioral analysis basics

Lab: ATT&CK framework mapping exercise

Day 23: Security Automation & Scripting (2 hours)

Python for cybersecurity

Automation opportunities in security

API integration for security tools

Lab: Python security automation scripts

Day 24: Business Continuity & Disaster Recovery (2 hours)

BCP/DR planning essentials

Recovery objectives (RTO/RPO)

Incident communication

Lab: Tabletop exercise facilitation

Day 25: Compliance & Audit (2 hours)

Audit preparation and execution

Documentation requirements

Gap analysis and remediation

Lab: Compliance checklist assessment

Day 26: Emerging Security Threats (2 hours)

Current threat landscape

AI/ML in cybersecurity

IoT security challenges

Lab: Threat intelligence research

Day 27: Security Awareness & Training (2 hours)

Human factor in cybersecurity

Phishing and social engineering

Security awareness program development

Lab: Phishing simulation setup

Day 28: Week 4 Review & Specialization (2 hours)

Choose specialization focus:
SOC Analyst Track: Advanced SIEM and monitoring

Penetration Tester Track: Advanced exploitation techniques

Compliance Track: Framework implementation

DAYS 29-30: CAPSTONE PROJECT & CERTIFICATION PREP

Day 29: Capstone Project (2 hours)

Choose one comprehensive project:

Option A: Complete security assessment of a test network

Option B: SOC implementation and monitoring setup

Option C: Incident response plan and simulation

Project includes:

Planning and scoping

Implementation using learned tools

Documentation and reporting

Presentation preparation

Day 30: Final Assessment & Career Planning (2 hours)

Capstone project presentations

Comprehensive skills assessment

Certification Prep: Security+ exam overview

Career planning and next steps

Portfolio review and optimization

Daily Structure (2 Hours Each Day)

Hour 1: Theory & Concepts (60 minutes)

Core concepts and principles

Industry best practices

Real-world case studies

Tool demonstrations

Hour 2: Hands-on Practice (60 minutes)

Guided lab exercises

Tool configuration and usage

Practical problem-solving

Mini-projects and assessments

Weekly Projects

Week 1 Project: Basic Security Assessment Report

Network security evaluation

System hardening checklist

Risk identification and prioritization

Week 2 Project: Security Investigation Case Study

Incident analysis and documentation

Tool usage for investigation

Findings and recommendations

Week 3 Project: SOC Playbook Development

Alert response procedures

Escalation workflows

Tool integration setup

Week 4 Project: Specialization Capstone

Comprehensive project in chosen track

Industry-standard deliverables

Professional presentation

Essential Tools Covered

Free Security Tools:

Kali Linux: Penetration testing platform

Wireshark: Network protocol analyzer

Nessus Essentials: Vulnerability scanner

Suricata: Intrusion detection system

Autopsy: Digital forensics platform

Enterprise Tools (Trials/Demos):

Splunk Free: SIEM and log analysis

Metasploit Community: Exploitation framework

Burp Suite Community: Web application testing

pfSense: Firewall and router platform

Cloud Platforms:

AWS Free Tier security services

Microsoft Azure security tools

Google Cloud Security Command Center

Assessment Methods

Daily Assessments (5 minutes each day):

Quick knowledge checks

Practical skill demonstrations

Tool proficiency validation

Weekly Projects (30% of grade):

Technical implementation

Documentation quality

Problem-solving approach

Final Capstone (40% of grade):

Comprehensive skill demonstration

Professional deliverables

Presentation and communication

Participation & Labs (30% of grade):

Daily lab completion

Active participation

Peer collaboration

Learning Outcomes

By Week 1: Understand cybersecurity fundamentals and basic security controls

By Week 2: Proficient with essential security tools and investigation techniques

By Week 3: Capable of SOC operations and security monitoring

By Week 4: Specialized skills in chosen track and advanced threat detection

Career Readiness:

SOC Analyst Level 1: Qualified for entry-level SOC positions

Junior Security Specialist: Ready for general security support roles

Compliance Analyst: Prepared for basic compliance and audit work

Security Operations: Foundation for security operations roles

Certification Preparation

Primary Target: CompTIA Security+

Course content aligns with Security+ objectives

Daily practice questions included

Exam strategies and tips provided

Mock exam in final week

Secondary Certifications:

CompTIA CySA+: Cyber threat detection focus

CEH Associate: Ethical hacking fundamentals

GIAC GSEC: Security essentials certification

Prerequisites & Success Factors

Technical Prerequisites:

Basic networking knowledge (TCP/IP, DNS, HTTP)

Windows and Linux familiarity

Command line comfort

Problem-solving mindset

Time Commitment:

Minimum: 2 hours daily for course content

Recommended: Additional 30 minutes for review/practice

Weekend: Optional extended lab sessions

Success Factors:

Consistent daily attendance and practice

Active participation in hands-on labs

Completion of all weekly projects

Engagement with security community and news

Career Support

Portfolio Development:

4 comprehensive security projects

Professional documentation templates

GitHub repository with code samples

LinkedIn profile optimization

Job Search Preparation:

Resume writing for cybersecurity roles

Interview preparation and common questions

Salary negotiation basics

Professional networking strategies

Continuing Education Path:

Advanced certification roadmap

Specialized training recommendations

Industry conference and training resources

Professional development planning

Note: This intensive 30-day program requires daily commitment and hands-on practice. Success depends
on consistent participation and completion of all practical exercises. The program provides a strong
foundation for entry-level cybersecurity careers and continued professional development.

